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SUMMARY 
A straightforward moving grid finite element method is developed to solve the one-dimensional coupled 
system of non-linear partial differential equations (PDEs) governing two- and three-phase flow in porous 
media. The method combines features from a number of self-adaptive grid techniques. These techniques are 
the equidistribution, the moving grid finite element and the local grid refinement/coarsening methods. Two 
equidistribution criteria, based on solution gradient and curvature, are employed and nodal distributions 
are computed iteratively. Using the developed approach, an intermingle-free nodal distribution is guaran- 
teed. The method involves examination of a single representative gradient to facilitate the application of 
moving grid algorithms to solve a non-linear coupled set of PDEs and includes a feature to limit mass 
balance error during nodal redistribution. The finite element part of the developed algorithm is verified 
against an existing finite difference model. A numerical simulation example involving a single-front two- 
phase flow problem is presented to illustrate model performance. Additional simulation examples are given 
in Part 2 of this paper. These examples include single and double moving fronts in two- and three-phase flow 
systems incorporating source/sink terms. Simulation sensitivity to the moving grid parameters is also 
explored in Part 2. 
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1. INTRODUCTION AND BACKGROUND 

Adaptive grid methods have become common tools in the quest for increased efficiency in the 
numerical solution of partial differential equations (PDEs). This is especially true in com- 
putational fluid mechanics, whence came most of the impetus for the development of these 
techniques.' An adaptive grid method is basically a procedure for orderly distribution of discrete 
points over a physical domain. These points are distributed in such a way that the physical 
phenomena on the entire domain may be represented at these points with acceptable accuracy 
and with minimum use of computer resources. Distribution is accomplished by decreasing the 
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spacing between points where large gradients and/or curvatures are involved in the physical 
phenomenon and increasing the spacing where the gradients and curvatures are small. Adaptive 
grid techniques may be used for transient problems where the gradients and curvatures may 
intensify and/or change their locations. These techniques are applicable to domains with regular 
or irregular, fixed or moving boundaries. Survey works that summarize the basic concepts of 
the self-adaptive grid are given by Smith,' Thompson et al.,3 Thompson and Warsai4 and 
Thompson.l* 5 , 6  In general, these techniques have been developed in order to: (a) reduce the size 
of the global matrix generated by the primary numerical scheme, in order to save computation 
time and memory space; (b) resolve oscillations and increase the accuracy of numerical solutions 
in the neighbourhood of sharp fronts, steep gradients and discontinuities; (c) obtain smooth 
solutions where the curvature of the function that describes the physical phenomenon is large; 
and (d)distribute the discrete points over the domain in an orderly fashion so that element 
connectivities can be easily identified. Four major types of self-adaptive grid approaches may be 
distinguished: adaptation by equidistribution methods, adaptation by moving grid finite element 
methods (MFEMs), adaptation by local mesh refinement/coarsening methods and adaptation by 
variational methods. 

The equations describing the immiscible flow of two fluids in a porous medium are a set of 
strongly coupled non-linear PDEs whose solutions typically exhibit sharp fronts and steep 
gradients. Finer spatial discretization is often required to limit oscillations and preserve accuracy. 
Thus these types of problems appear to lend themselves well to solution by adaptive grid 
methods. Equations governing multiphase flow in porous media represent an important class of 
problems having applications in oil reservoir simulation, chemical process engineering, un- 
saturated groundwater flow and non-aqueous phase contaminant transport in groundwater 
systems. 

To date, the use of self-adaptive grid techniques for the solution of multiphase flow problems in 
porous media has not been fully exploited. This is primarily due to the non-linear and coupled 
nature of the governing equations. A few works, however, have examined the one-dimensional 
adaptive grid solution of the Buckley-Leverett equation. This is a single-equation formulation of 
the two-phase flow problem which was developed to model oil reservoir water flooding and in 
which the capillary pressure between the fluids is n e g l e ~ t e d . ~ ~ "  The works of Douglas et al.,' 
Gelinas et ~ 1 . ~  and Gruham et al.' adapted the grid by a moving finite element method. Here the 
grid moved according to an ordinary differential equation (ODE) generated by differentiation of 
an equidistribution equation with respect to time. An equidistribution equation is an equation 
which expresses an equal distribution of some positive weight on each of the discrete elements in 
the computational domain. The developed ODE was solved simultaneously with the PDE 
problem. This type of moving grid algorithm was originally proposed in Reference 11. In 
Reference 10 the Buckley-Leverett equation was solved by a moving boundary technique. In 
addition to the moving grid works mentioned above, adaptive local grid refinement methods have 
also been employed for oil reservoir simulation.12x'3 In Reference 12 the use of an implicit 
pressure, explicit saturation scheme permitted separate treatment of the coupled governing 
equations. Local refinement was applied to the solution of the saturation equations, which are 
solved explicitly in the scheme. The influence of capillary pressure was neglected in this approach 
as with the Buckley-Leverett formulation. 

In this paper a straightforward self-adaptive moving grid finite element method is developed 
for the one-dimensional solution of the coupled set of non-linear equations describing immiscible 
flow. The method contains features of a number of self-adaptive approaches which have been 
presented previously in the literature. These features are the artificial repulsive force and viscosity 
which were introduced in References 11 and 14 and the equidistribution function of the gradient 
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and curvature which was used earlier by a few investigators (e.g. References 15 and 16). These 
criteria are similar to the first and second norms of the estimate for the error associated with the 
numerical solution. Adaptations of the equidistribution approach are made herein which facilit- 
ate nodal redistribution for coupled sets of non-linear PDEs. This task has been thought to be 
computationally prohibitive using existing MFEM algorithms (see e.g. References 8 and 17). 

Two sets of governing equations are presented in the following pages: one for the immiscible 
phase flow problem and one for grid redistribution. A moving grid finite element method based 
on these equations is developed. Unique model features are then discussed. The developed model 
is verified for a two-phase flow problem and a single-front two-phase flow problem is simulated. 
Part 2 of this paper details a number of model applications for complicated flow scenarios. 
A sensitivity analysis of moving grid parameter values is included. In addition, a number of 
comparisons are made between moving grid and fixed grid solutions, including CPU processing 
time and memory space. 

2. GOVERNING EQUATIONS FOR IMMISCIBLE MULTIPHASE FLOW IN 
POROUS MEDIA 

The general governing equations for immiscible multiphase flow include (a) a continuity equation 
for each phase, (b) relations between the capillary pressure and the phases’ saturation levels, 
(c) relations between the capillary pressure and the phases’ relative permeabilities and (d) the 
relation among the phases’ saturation levels. 

The continuity equation 

The continuity equation for the a-phase is given as 

+Sap,- ap, + S  p - ) = V - ( K k r a ( V P a + p a g V z ) ) .  aP 
at a + at P a  

where g is the gravitational acceleration, [LT-2], K is the intrinsic permeability, [L2], kr, is the 
relative permeability of the a-phase, P, is the pressure of the a-phase, [M L-’T-’], is the 
average pore fluid pressure, [M L- ’ T-’1, S,  is the saturation level of the a-phase, z is the length 
along the vertical co-ordinate, [L], pa is the compressibility of the a-phase, [M-’ L4T2], p4 is the 
compressibility of the matrix, [M-’ L4T2], 4 is the matrix porosity, pa is the dynamic viscosity of 
the cl-phase, [M L- T-  ‘1, and p, is the density of the a-phase, [M L-3]. It is assumed in (1) that a 
modified form of Darcy’s law controls the flux of the a-phase. 

One can simplify equation (1) by lumping the compressibility terms. Here an assumption is 
made that capillary pressure has a negligible effect on matrix and fluid densities. After lumping 
these terms, (1) becomes (in the x-direction with an angle 8 to the vertical axis) 

where p, = Pa + /?+ . 

Saturation as a function of capillary pressure 

The phase’s saturation level is a function of the capillary pressure P,. An appropriate functional 
form for this relation was proposed and fitted to data by van Genuchten.I8 This relation is given 
bv -, 

Ss, - Sr, 
[ 1 + (a,h,)”..] ’ S,  = Sr, + (3) 
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where a, is an empirically determined parameter, h, is the capillary head between the wetting and 
non-wetting fluids based on water unit weights (hc = -P,/p,g), msm = 1 - l/nsm, nsa is an empirically 
determined parameter, P, is the capillary pressure between the fluid phases (8, = P, - P,, the 
capillary pressure between the organic chemical and the water; Pwg = P, - P,, the capillary 
pressure between the water and the gas), Sr, is the residual saturation level of the a-phase and Ss, 
is the maximum saturation level of the a-phase. 

Relations among the phases' saturations 

The summation of all the phases' saturations must be unity: 
N, c s,=1 

a=  1 
(4) 

Relative permeability as a function of capillary pressure 

been derived from the theory developed by Mualem l9 (Reference 18): 
The relative permeability is also a function of P,. A closed-form expression for this function has 

where akE and aka are empirically determined parameters and mka = 1 - l /nkm.  
Expressions of the form of (3)-(5) have often been applied in the modelling of multiphase flows 

in groundwater systems20 -22  and will be employed in this paper. For water-trichloroethylene 
(TCE) two-phase flow, water saturation is calculated by employing (3) and TCE saturation by 
employing (4). Water relative permeability is estimated by (5) and organic relative permeability is 
estimated by a modified form of (5), 

where ako is an empirically determined parameter and 8 = 1 - ( S ,  - Sr,)/(Ss, - Sr,). For 
water-TCE-gas three-phase flow, phase saturations and relative permeabilities are estimated by 
Stone's23 method. This method calculates saturations based on the assumptions that organic is 
the fluid of intermediate wettability in a water-organic-gas pore-filled system and that there is no 
contact between water and gas. Thus water and total liquid saturations are evaluated by (3) using 
P,, and Pwg respectively as the appropriate capillary pressure, and gas and organic saturations are 
evaluated by (4). Water relative permeability is evaluated by (5) using P,=P,,. The organic 
chemical relative permeability is evaluated by weighting its permeability in water-organic and 
organic-gas (equation (5)) two-phase systems using Po, and Pog respectively for P,. This weighting 
is accomplished by (a) obtaining the fluids' normalized saturations (equations (7)-(9)) in the 
water-organic and organic-gas systems, (b) dividing the organic relative permeability in each 
system by its normalized saturation (equations (10) and (1 1)) and (c) employing (12) to obtain the 
weighted organic relative permeability in the three-phase system: 

S ,  - Sr, 
1 - Sr, - Sr, S: = for S,>Sr,, (7) 

s: = s g  

1 - Sr, - Sr, ' 
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so - Sr, 
1 - sr, - Sr, 

S,* = for So>Sro,  (9) 

The non-linearity in the $ow equations 

In this paper the flow of two or three immiscible pore fluid phases will be considered: a water, a 
non-aqueous organic and a gas (air) phase. It is assumed that the gas pressure remains constant at 
1 atm. This is an assumption which has been used by a number of investigators to solve 
multiphase flow problems in groundwater systems (see e.g. References 24-27). This assumption is 
employed herein to limit the discussion to two coupled flow equations. Thus equation(2) 
represents a system of two coupled non-linear PDEs which describes the flow of water, organic 
chemical and air. This can be easily seen by rewriting (2) explicitly for each phase and 
incorporating the identity 

& = p, + Pwg + 4, (13) 

Pg=0 (14) 

where the subscripts 0, w and g denote the organic, water and gas phases respectively, 

and 

as, - as, a&, as, ap,, 
at ae, at aPw, at ’ + - - - -  - - ~ -  - 

since S, is an explicit function of P,.  Thus the continuity equation for the water phase becomes 

+(- a&, as, a&, at +-- ap,, as, ap,, at + S W B S . ~ )  a p w ,  =kPw(= aPw, +ywcosB)] 

and the continuity equation for the organic phase becomes 

where 
Ko=Kkr,/Po, Kw = Kkr,Ik 

B s ,  = B$# + B o ,  B,,=8$#+Bw, 
Yo = Po% Yw = P W S .  

Equations (16a) and (16b) represent a system of two PDEs in two independent unknown 
pressures Po, and Pwg. These equations are coupled through Pow, Pwg and the auxiliary 
equations (3)-(12). Equations (16a) and (16b) are non-linear since all the coefficients, with the 
exception of Bs,, are functions of the unknowns. Furthermore, the auxiliary functions (3)-(12) 
generally describe very non-linear expressions relating S,  and kr, to Pow. Figures 1 and 2 illustrate 
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Figure 2. KO and K ,  versus Pow as calculated from Table I for TCE and water 

these relations for two-phase flow of TCE and water. These parameter curves were employed in 
model verification and for the example problem. Note that in Figure 2, K ,  is plotted against the 
capillary pressure, where K, = Kkr,. 

3. GOVERNING EQUATIONS FOR THE SELF-ADAPTIVE MOVING GRID 
ALGORITHM 

In general, multiphase flow problems may involve multiple fronts whose directions of propaga- 
tion alter during the course of simulation. Mass sources and sinks are also common. As a result, 



MULTIPHASE FLOW IN POROUS MEDIA. 1 31 

steep gradients and large curvatures may be present in either of the unknown pressure variables. 
Thus a moving grid algorithm is sought which is self-adaptive to the changing conditions and 
which provides for some semi-optimal distribution of nodes to minimize numerical error with 
respect to both unknown variables and without a great increase in computational cost. 

Two equidistribution criteria have been proposed in the literature as estimates of the first and 
second norms associated with the numerical solution. These are based upon solution gradient 
and curvature and are especially attractive because they may be readily computed a priori. 
A number of moving grid and mesh refinement algorithms have been based on one or both of 
these criteria.7*’3”5-’7~28’29 The general form of such a criterion can be written as 

(Xi+l-xi)‘ ( !I+ ’ ( I  5(x)Ip + E )  dx)l”= constant, (17) 

where xi  is the spatial co-ordinate of node i, c(x) is the gradient or curvature function of the 
unknown, p and q are real constants and E is a positive rational parameter. The parameter E was 
first introduced by Miller and Miller” and Miller,14 who found the use of such a parameter 
necessary to obtain reasonable nodal distribution solutions based upon some form of (17). 

A discrete form of the gradient equidistribution criterion may be obtained by selection of 
appropriate constants p and q and by letting 5 E P‘, the gradient in the unknown. Since a linear 
approximation of the unknown will be obtained with a finite element method employing linear 
basis functions, the estimate of P’ will be constant within an element and (17) becomes 

(xi + - xi)J( pi2 + el ) = constant, (18) 

where p = 2  and q=+ have been chosen to obtain a linear function of the element length 
and Pi = (& + - & ) / ( x i +  - x i )  is the piecewise constant approximation of the gradient of P in 
element i. 

The parameter E’ appearing in (18) is termed an ‘artificial repulsive force’ in the literature. It is 
inserted in (18) to overcome the problem of excessive nodal clustering around the largest 
gradients in the discretized domain and to avoid construction of an ill-conditioned matrix in 
algorithms which are based on the gradient of the variable when the gradient vanishes or becomes 
very small. This problem has been identified by a number of investigators through their 
experience with moving grid finite element  method^.'^,'^ Note that (18) distributes the grid 
points more uniformly as E’ becomes larger. 

Similarly, an equidistribution equation from the criterion to distribute the nodes according to 
the curvature can be written as 

(xi+ -xi)‘( [:+ ‘ ( IP”(x)lP + E ~ )  dx)”’= constant. (19) 

The above equation incorporates the parameter E ~ ,  which is commonly called ‘artificial vis- 
cosity’.’’ This parameter has often been introduced in the self-adaptive moving grid FEMs to 
provide for an intermingle-free nodal distribution. Its use also avoids the construction of an ill- 
conditioned matrix in algorithms which are based on the curvature of the variable when the 
curvature vanishes or becomes very small. 

A centred discrete analogue to (19) is sought for a piecewise linear approximation of P”(x). 
Consider a centred finite difference approximation of P” at node i, which may be written as 
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and similarly at node i f  1, 

Approximation of P“ by both (20a) and (20b) may be accomplished by weighting these ex- 
pressions linearly. Substitution of a weighted approximation for P“ in (19) yields 

=constant, (21) 

where B ,  and B,  are arbitrary curvature-weighting parameters which can be specified by the user. 
Sensitivity analysis for the values of these parameters is given in Part 2 of this paper for the 
problem of immiscible flow in porous media. Equation (21) now becomes 

(22) (xi+ -xi- 1 ) ~ 1  J [(P;-P:-  1)2 + E , ]  +(xi+, -xi)B2J [(Pi+ -PI)’ + c 2 ]  =constant, 

with p=2 and 4 = 9  chosen to obtain a linear function of the element length. 
The gradient (1 8) and curvature (22) criteria may be combined to yield 

(Xi+ I - X i ) J ( P i 2  + E l )  + (Xi+ 1 -xi- l)Bl J [ (P i  - Pi- + E2-J 

+ (xi + 2 -xi)B, J [ ( P :  + 1 -PfIZ + ~2 I =A(xi - 1 > xi: xi + 1 9 xi + 2 1, (23) 
where 

xi, x i + l ,  xi+,)=constant. 

Since A- -A = 0, (23) leads to the following set of algebraic equations for the nodal distribution: 

x1= X(O), (244 

f ; - l - A = O  for i=2 , .  . . , n - 1 ,  (24b) 

X” = x(4, (244 
where the explicit form of (24b) is 

xi- 2 { -B1 J [(Pf- 1 -Pi- ,), +&,I} 
+xi- 1 { -J(P:2_ 1 + E l )  +(B, - B2)J [Pi - Pi- 1 l2 + E Z 1  } 
+xi(J(P:l 1 + El)+J(Pf2+ El)+Bl J [ ( P : -  1 -Pf-2)2 +&,I + B,J[(P:+ 1 - P : ) z + E , ] )  

+xi+ 1 { -J(P:, + E l )  + (B ,  -- B,)J  [ (P:  - Pi- 1)2 + E,] } 

+xi+ , { - B 2 J  [ (P: ,  1 - Pi), + E,] = 0. (244 
The algebraic equations (24) are employed to determine nodal locations in the moving grid 
algorithm discussed in the next section. These equations are used in place of more complicated 
ODEs which can also be developed from equidistribution criteria (17) by differentiating these 
criteria with respect to time. Such ODEs have been employed in moving grid finite element 
algorithms in order to solve for both the unknown variable and nodal locations in problems 
involving a single PDE (e.g. References 7, 8, 11, 13, 14, 16, 17 and 28). For problems involving 
coupled sets of PDEs, however, a set of ODEs which describe the nodal locations will result. This 
set of ODEs forms a multi-objective problem for the nodal locations since the solution of (24) is 
different for each variable gradient. The solution of such a multi-objective problem is complicated 
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and time-consuming and an algorithm to solve it simultaneously with a coupled PDE problem is 
practically unmanageable.' Alternatively, the value of a single representative gradient may be 
calculated a priori to the solution of (24) to facilitate the application of an adaptive grid algorithm 
in the solution of a coupled set of non-linear PDEs. Thus it is proposed to solve (24) in a iterative 
manner coupled with the finite element algorithm. 

It should be noted that an intermingle-free solution is guaranteed in the solution of the set (24) 
when B , = B , ,  even if the artificial viscosity E* is neglected. This may be demonstrated by the 
application of the minimax principle of algebra (e.g. References 30 and 31). The principle can be 
applied because the main diagonal is positive, all the off-diagonal terms are negative and the main 
diagonal is equal to the negative sum of the off-diagonal terms. Here an intermingle-free solution 
is defined as a solution for which xi- <xi .  A solution in which the nodes intermingle implies that 
x i -  2 xi for some nodes and this would result in an unstable numerical algorithm. 

4. THE MOVING GRID FINITE ELEMENT ALGORITHM 

A modified moving grid finite element method (MGFEM) is now developed which is composed of 
two basic parts: the finite element algorithm which solves the non-linear coupled set of PDEs and 
the moving grid algorithm which adapts the grid to the physical conditions in the domain. The 
finite element algorithm may be any finite element algorithm that can solve the PDEs. The 
algorithm used in this paper to solve the PDEs which govern multiphase flow in porous media is 
based on a time-implicit standard Galerkin FEM with linear basis functions and a simple 
iterative (Picard) procedure. In this algorithm the dependent primary variables Pwg and P,, and 
the non-linear coefficients (secondary variables) K,,  S,, BS,/BP,,, and BS,/BP,, are approximated 
with piecewise linear functions. The non-linear coefficients are approximated implicitly by 
substituting the solution of the dependent variables from the previous iteration into the auxiliary 
functions (3)-(12). The approximations of the non-linear coefficients are then used to calculate the 
mass and stiffness matrices for the next iteration. The model calculates the saturation derivatives 
BS,/BP,, and BS,/BP,, by a finite element analogue to the well known finite difference chord slope 
method.32 This analogue is discussed by Gamlie133 and had been employed to improve the mass 
conservation properties of the numerical scheme. The Picard iteration technique is used because 
of its simplicity, and the iterations proceed until the maximum of the absolute deviation of any 
new pressure solution from a previous one is less than a small given value 6,. A more efficient 
iterative technique could easily be accommodated. Evaluation of the matrix solver efficiency, 
however, is not a part of this work. 

The moving grid adaptation in the MGFEM is accomplished by solution of the set (24). These 
algebraic equations are solved iteratively with the discretized PDEs. Using this approach, nodal 
positions can be calculated with various frequencies: every iteration within the non-linear 
solution process, every time step or every few time steps. In addition, nodal distribution may be 
performed any time when the absolute deviation of (24d) from zero is greater than some positive 
value 6,. The adaptation frequency is then controlled by selecting an appropriate 6,. The 
appropriate adaptation frequency was found to vary with the problem under consideration, as 
discussed in Part 2 of this paper. Once new nodal positions have been computed, solution values 
at these positions are obtained by interpolation using the model basis functions. All nodal 
parameters are then evaluated, element lengths are updated and the finite element solution 
proceeds. The entire solution procedure is summarized in Figure 3. 

It must be emphasized that the computation time is greatly reduced by decoupling of the PDE 
and nodal redistribution problems. If there are k PDEs, one equidistribution equation and 
n discrete nodes, two matrix problems of size kn x kn and n x n are thus solved in place of one 



34 

- 
A. GAMLIEL AND L. M. ABRIOLA 

calculate Sa and Kn based on 
last pressure iteration solution 

START 0 

-no 
solution solution 

any element 

equation 
rn0 

perform grid r- redistribution 

I 
I w 
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( k +  1)n x ( k +  1)n matrix problem with a larger bandwidth. The utility of a non-simultaneous 
approach for grid adaptivity is also supported by Benner et al.,'' who compared the performance 
of simultaneous (with the solution of the FEM) and non-simultaneous (after every time step) grid 
adaptation using an equidistribution criterion similar to (22). In this comparison the difference 
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between the solutions was found to be negligible and grid adaptation after each time step reduced 
the computation time by 50%. 

The way in which the gradient P: in (24) is assigned must be addressed, since it is not obvious 
how to assign a single representative gradient for a node in a problem with multiple dependent 
variables. A reasonable representative gradient from the nodal distribution point of view could be 
the largest gradient among all the variable gradients at each node. That is, at a given node the 
moving grid algorithm may select the gradient of one variable and at another node it may choose 
the gradient of another variable. It should be noted that with such a scheme, gradient scaling may 
prove necessary before choosing the largest gradient for problems with different orders of 
magnitude in the unknown variables and where grid adaptation with respect to the variable with 
the smallest gradient is also of interest. Such scaling was not required for the simulations 
presented in this work. The above approach for selecting the gradient should give a good grid 
adjustment even for a very complicated domain with several fronts, sources and sinks. In 
addition, this method of selecting the gradient can adjust the grid for changes in the strength of 
the sources or the direction of front propagation. The gradient of one variable may be selected for 
simple problems where only one front is observed, advancing in one direction. Using this 
approach, the largest gradient among P,, and Pwg should be selected for the general problem 
of organic-water two-phase flow in porous media, and the largest capillary pressure gradient 
should be assigned for a multiphase flow problem in porous media which involves other fluid 
phases. The gradient Pi is the linear approximation of the slope of I!,, or Pwg in element i ,  
e.g. I P,,, i +  - P,,, I/(xi + - x i )  or I P,, + - Pwg, [ / ( x i +  -x i ) .  This gradient approximation is 
consistent with the definition of Pi in (18). 

It should be emphasized that assigning a single representative gradient for each node facilitates 
the utilization of moving grid algorithms to solve non-linear coupled sets of PDEs. This approach 
eliminates the need to formulate a few equidistribution equations for each node (one for each 
variable) and to solve these equations with some non-linear optimization code. Solution with a 
non-linear optimization code would be required for such problems because different nodal 
distributions may be produced for each variable. Note that the method of calculating P:  described 
above requires a solution for the PDE problem before any grid adaptation. Thus simultaneous 
solution of the PDEs and the grid is prohibited. 

Application of (24) for nodal distribution requires the specification of a number of parameters, 
i.e. B,, B,, and e2. Guidelines for the selection of these parameters have been developed 
through numerical experimentation on a number of multiphase flow problems and are discussed 
in Part 2 of this paper. Specification of a non-zero value for E, was found to be unnecessary in all 
scenarios examined. 

Another important issue is the evaluation of the variables at the new nodal positions after 
redistribution. This is a significant issue since the evaluation must be consistent with the basic 
finite element algorithm and must provide for conservation of mass of each phase within the 
domain. On the basis of these two criteria, it is recommended to evaluate the pressures at the new 
nodal locations by assuming a linear pressure distribution within each element, since linear 
interpolation functions are used to approximate pressures in the finite element algorithm, in 
which pressures are the primary variables. The dependent variables S, and K, should then be 
evaluated using the auxiliary functions (3)-( 12) to make these variables consistent with the 
pressures. Numerical experimentation, however, revealed that this method of evaluation may 
cause an error in the total mass of each phase within the domain, particularly for problems 
involving multiple fronts or other local minima/maxima. This problem arises because (3) 
expresses the saturation as a non-linear function of the capillary pressures. The resultant mass 
error is illustrated in Figure 4(a), where the symbol ‘0’ represents an initial nodal distribution 
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Figure 4. Mass error caused by nodal redistribution (a) without fixing local maximum node and (b) with fixing of local 
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and the symbol ‘ x ’ represents nodes after redistribution. To overcome this problem, saturation 
could be evaluated at the new nodal locations by linear interpolation and then the pressures 
could be obtained from the saturations. Such an approach, however, is inconsistent with the 
numerical scheme, because pressures are the primary variables, and may result in an unstable 
solution, as has been observed by the authors. 

Instead, it is recommended to calculate the pressures by linear interpolation, to compute the 
saturations from the pressures by (3) and to fix the location of nodes with local maxima or minima 
in any of the unknown pressures at the time of redistribution. This procedure is designed to assign 
pressures and saturations at the new nodal positions in a fashion consistent with the numerical 
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algorithm and to reduce phase mass balance errors to a very negligible value. Momentarily fixing 
the location of the nodes of local maxima or minima in the pressures means that a test must be 
performed before each nodal redistribution operation to locate these nodes and that these nodes 
are to be kept fixed during this redistribution. A local maximum or minimum with respect to a 
specific pressure is detected in the programme simply by comparing the value of each pressure to 
the pressure at the neighbouring nodes. If the pressure at a node is lower than the pressure at the 
two neighbouring nodes, then that node is considered to have a local minimum with respect to the 
given pressure. An example of fixing a node with a local maximum in Po, is given in Figure 4(b). 
This example shows the elimination of the error produced in the organic mass about the node 
having maximum organic chemical saturation. The nodes that are fixed during one redistribution 
operation may be moved during another redistribution operation, when local minima or maxima 
in the pressure solution shift to other nodes. In addition, this redistribution scheme solves the 
problem of maintaining a node in the location of a sink/source point and facilitates the division of 

Table I. Soil and fluid parameters used in simulations (after Abriola") 

Characteristic Value Units 

9 

K 

Yo 
Po 

Yw 

P W  

4 

P o  

PW 

Water-TCE simulation 

S r w  
SS, 

as, 
n& 

nkw 

Water- TCE-gas simulation 

SrW 
S S W  
Sro 
ss, 
asw 
ns, 

astotal liquid. 

aStotal l iquids 

,,w-o System 
k, 
,,w - g system 

to 

ko 

k, 
,,w - 0  System 

no - g system 

980.616 
0.36 

5.2831 x 
2.0x 10-10 

1437.28871 
5.8 x 10-3 

0 
980.465 

0.0 1 
4.531 x l o - "  

0.306 
0.9998 
0.11 
6.50 
0.108 
6.60 
0.40 

0.170 
1 .Ooo 
0.170 
1~000 
0.1043 
4.690 
0.0624 
8.6050 
0.108 
0.8560 
0.8838 
0.6320 
0.6216 

cms-2 

cm2 
cm2 dyn- 
gcm-2s-2  
Poise 

gcm-2s-2  
Poise 
cmz dyn-l 

cm-' 

cm-' 

cm-' 

cm-' 

cm-' 
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the domain into independent segments. These independent segments generate smaller matrix 
problems out of (24) and in turn the computation time is reduced. 

The finite element algorithm used herein was verified against a finite difference solution for 
problems involving two- and three-phase flow of water and TCE in a 19 cm soil column. The 
verification of the FEM algorithm outlined above was required because this FEM scheme is the 
basis for the MGFEM model and is also used as the fixed grid FEM (FGFEM) model. The finite 
difference model used for model verification is presented in References 24 and 25. This finite 
difference simulator solves two- or three-phase flow problems of the form (16) with or without 
interphase mass exchange. The governing PDEs are approximated in the finite difference model 
with a fully implicit, central difference formulation. The resulting system of non-linear algebraic 
equations is solved by a Newton-Raphson iterative scheme. Simulation parameters for the FEM 
verification example are given in TableI. Note that both the FDM and FEM algorithms 
calculate the TCE saturation and relative permeability by the same methods, 

The results of both algorithms for the same nodal spacing and time step size are almost 
identical for the simulated examples (Figures 5 and 6). Figure 5 shows a comparison between the 
FEM and the FDM at different times for water displacement by TCE in a two-phase flow regime. 
Figure 6 compares the solutions of a three-phase flow problem involving gas displacement by 
TCE. Both simulations were conducted for a horizontal soil column under constant pressure 
boundary conditions. The initial and boundary conditions for these problems are specified in 
Table 11. Figure 5 also shows finite element simulation comparisons using nodal spacings of 1 cm 
and 1 mm. A 1 mm nodal spacing was observed to give a smooth sharp front solution with 
minimal numerical dispersion. Decreasing the nodal spacing further did not visibly improve the 
solution. Thus solutions based on a 1 mm element length were selected to be used as a basis for 
the error analysis in subsequent simulations. This was required since analytical solutions are not 
available for these problems. 

FEM dx=f.O, M O O  fDMjx=!,O,-!=fOO. FEM dx=O.l, t=100 
KFEdx=J.O,+20 F D M  dx=l.O, tS00 E M  dx=O.l, t 3 0 0  0 . 8  

0.6 
0 
v) 

0.4 

0.2 

0 
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0 
II) 

0.6 

0.5 

0 . 4  

0.3 

0.2 

0 . 1  

x (4 
Figure 6. Comparison between the So solutions of standard Galerkin FEM (Ax=0.5 cm) and Abriola’s FDM for 

TCE-water-gas three-phase flow simulation 

Table IT. Initial and boundary conditions for the problems discussed in this paper 

P,, (dyncm-’) Po, (dyncm-2) 

Two-phase pow verification problem 

Initial conditions 
Upstream boundary conditions 
Downstream boundary conditions 

Three-phase flow uerification problem 

Initial conditions 
Upstream boundary conditions 
Downstream boundary conditions 

Simulation example 

Initial conditions 
Upstream boundary conditions 
Downstream boundary conditions 

1000 
1000 
1000 

-20135 
- 16853 
-20135 

1000 
5900 
1000 

0 
14610 

No flux 

15210 
15210 
15210 

0 
9710 

0 

5. SIMULATION EXAMPLE 

An example of the application of the MGFEM to a two-phase flow problem is given in Figures 7 
and 8. Here TCE displaces water in a horizontal soil column. This problem involves a single 
displacement front. More complicated scenarios are examined in Part 2 of this paper. Results of 
this simulation were used as initial conditions for a subsequent, multiple-front simulation. The 
initial and boundary conditions for this problem are specified in TableII. The moving grid 
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fixed grid dx=lmm 

0 moving grid 10 nodes 
x !jxed.g~d.dxlmrn.. 

0 

fixed grid dx=lmm 

0.6 x !ixe!dxa!.rm .... 

0.8 

0 . 6  

8 0.4 

0.2 

0.0 
0 5 10 15 

(4 x (cm) 

D 

Figure 7. So simulation results of TCE-water horizontal single-front flow after (a) 100 s, (b) 500 s and (c) lo00 s 
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Figure 8. (a) Po, and (b) Pws simulation results of TCE-water horizontal single-front flow after lo00 s 

parameters were selected as zero for both for B ,  and B, 
respectively. Using these parameter values, the MGFEM yields a nodal spacing in the range of a 
few millimetres about the front between the fluids. This is the nodal spacing that was employed 
for the very fine fixed grid FEM (FGFEM) computation, which is treated as the ‘true solution’ for 
error analysis purposes, as was explained above. 

The grid in this problem was updated after a time step in which the largest gradient was located 
in an element whose length was greater than the smallest element length by some percentage, 
i.e. when the condition 

Li(max(P3))>min(Lj ) xfactor 

and E,  and 1.2 x and 1.0 x 
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Table 111. Comparison between moving and fixed grid FEM 

Fine Coarse Coarse fixed grid 
fixed grid fixed grid Moving grid (accuracy of moving grid) 

No. of nodes 
Nodal spacing (mm) 
No. of iterations 
CPU time (s) 
Memory space* of constants 
Memory space of arrays 
Total memory space 
Error? 

191 10 

22165 3804 
2499 1 220 

128 128 
11600 580 
11728 708 

1.0 21.1 

0.3097 

10 
Changeable 
1845 
114 
136 
610 
748 

0.06093 

77 

20259 
2249 

128 
9064 
9192 

2.4 

0.06094 

Memory space is estimated using double precision for reals and is given in bytes. 
t Integration of the first norm of the error over the domain based on the deviation of the organic saturation solution from 
the fine fixed grid solution. Linear interpolation is used whenever interpolation of the solution is required, and the 
trapezoidal method is used for integration. 

is met. Here L,(max { P i > )  is the element which contains the maximum gradient, min {Lj )  is the 
smallest element length in the domain and ‘factor’ is a positive constant greater than 1.0 (the value 
1.2 was used in this problem). This front-tracking test was applied in the example simulation 
because it is very economical, it was known a priori that this example problem involved only one 
front moving in one direction and it provides an adequate grid adaptation frequency. The 
adaptation frequency is adequate for the simulation example because the centre point of the front 
requires at least one time step to move from one element to an adjacent element. 

Numerical results for this example are shown in Figures 7 and 8. Figure 7 shows the TCE 
saturation distribution 100, 500 and lOOOs after placing the TCE source at the upstream 
boundary. Figure 8 shows the solutions for eW and Pwg after lo00 s. In these figures, three 
numerical solutions are compared. The ‘0’ symbol represents the nodal locations of the 
MGFEM and the ‘ x ’ symbol shows the nodal locations of the coarse FGFEM. Both solutions 
were obtained with 10nodes. The solid line shows the ‘true solution’ which was obtained by 
employing the fine, 1 mm nodal spacing, FGFEM with 191 nodes. These figures illustrate the 
concentration of the MGFEM nodes about the organic-water front and the grid adaptivity 
to the front’s motion. The numerical results demonstrate close agreement between the new 
MGFEM solution and the ‘true solution’. In fact, the solution of the MGFEM for So deviates 
from the ‘true solution’ by only 20% of the deviation of the coarse FGFEM solution (Table 111). 
Here the deviation (error) is the area between the coarse fixed grid solution or the MGFEM 
organic saturation solution and the fine ‘true solution’. The organic saturation solution is used for 
error calculation because it is the most important variable from the environmental point of view. 
Errors in Pow and Pwg may also be reported, but the error in eW is related to the error in So. This is 
because So is calculated from Pow using (3). The error in Pwg is not reported because it is much 
smaller than the error in Pow (see Figure 7). In addition, it is demonstrated by monitoring the CPU 
time and calculating the storage requirement (Table 111) that, for this simulation, use of the 
MGFEM resulted in a significant saving of computer resources. The comparison of computer 
resources is based on the actual CPU time used by the computer and the actual memory space 
allocated for variable and parameter storage in double precision. The compared CPU time does 
not include reading of input data, print-out of the input for reference or rearrangement of the data 
for simulation. This comparison shows that the MGFEM required fewer iterations than the 
FGFEM for the given example with the same number of nodes and time steps. The reduction in 
iterations may be due to the greater availability of nodes about the moving front. 
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A comparison was also made between the moving grid (10 node) and a fixed grid solution of the 
same accuracy. Here the fixed grid algorithm required 7.7 times the nodes, 5.4 times the memory 
bytes and 18.8 times the CPU used by the moving grid algorithm. These figures show a significant 
saving of computer resources by the MGFEM simulator for a one-dimensional two-phase flow 
problem with a single front (TableIII). All computer simulations were performed on Apollo 
DN4000 computers. 

6. CONCLUSIONS 

A one-dimensional MGFEM is developed herein to solve the non-linear coupled set of PDEs 
governing immiscible multiphase flow in porous media. Grid adaptation is based on equi- 
distribution of the gradient and curvature. The presented moving grid algorithm guarantees a 
grid-intermingle-free solution for equal upstream and downstream curvature weights. The 
manner of choosing a representative gradient at each node is discussed in order to facilitate the 
application of this adaptive grid algorithm to a problem of a coupled set of non-linear PDEs. 
Also, momentarily fixing the nodes of extremum pressures is considered in order to maintain 
mass conservation during grid adaptation and to assure the presence of a node at a sink/source 
point. The model is verified against the Abri~la-Pinder’~’~~ FDM model and is applied to a two- 
phase displacement problem involving TCE and water to illustrate and examine its performance. 
The MGFEM model exhibited a substantial increase in accuracy over an FGFEM with the same 
number of degrees of freedom. Further example simulations of this model are given in Part 2 of 
this paper along with a sensitivity analysis with respect to the moving grid parameters. 
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APPENDIX: LIST OF SYMBOLS 

cr-phase coefficient in relative permeability equation 
a-phase coefficient in saturation equation 
upstream curvature weight in nodal distribution 
downstream curvature weight in nodal distribution 
gravitational acceleration, [L T-’] 
capillary head between wetting and non-wetting fluids based on water unit weight, [L] 
length of ith element [L] 
relative permeability of a-phase 
intrinsic permeability, [L2] 
Kkro/Po, [LZ1 
KkrwlPw, CL21 
a-phase exponent in relative permeability equation 
a-phase exponent in saturation equation 
a-phase exponent in relative permeability equation 
a-phase exponent in saturation equation 
capillary pressure, [M L-’ T-’3 
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representative variable at node i 
piecewise linear approximation of representative gradient in ith element 
pressure of a-phase, [M L-’ T-’1 
capillary pressure between a- and P-phases, Pas = Pa - Ps, [M L- T-’1 
average pore fluid pressure, [M L-’ T-2] 
saturation of a-phase 
residual saturation of a-phase 
maximum saturation of a-phase 
location of ith node, [L] 
length along vertical co-ordinate, [L] 

Greek letters 

p a + p e ,  C M - ~ L ~ T ~ I  

P,S, CML-2T-21 

compressibility of a-phase, [M- ’ L4TZ] 
compressibility of matrix, [M-’ L4T2] 

p w s ,  CML-’T-’l 
artificial repulsive force 
artificial viscosity 
dynamic viscosity of a-phase, [M L-’T-’] 
density of a-phase, [ML-3] 
matrix porosity 

Subscripts 

0, w, g denoting organic, water and gas phases respectively 
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